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Spatial variability in terrain, vegetation, and other features affect cattle and wildlife distribution on
mountainous grazing lands of the western United States. Yet we have a poor understanding of how this
spatial variability influences risk of wolf-cattle encounters and associated depredation. This knowledge
gap severely limits our capacity to prevent or mitigate wolf-cattle conflict. Research addressing this
problem was conducted in 2009—-2011 at four study areas in western Idaho to evaluate models and
mapping tools for predicting spatial risk of wolf-cattle encounters. Lactating beef cows grazing these

Ibf?r/la‘:\//i?)rrds.. study areas were instrumented with Global Positioning System (GPS) collars and tracked at 5-min in-
Bos taurus tervals throughout the summer grazing season. Resource selection function (RSF) models, based on
Canis lupus negative binomial regression, were developed from these GPS data and used to map the relative prob-
encounter risk ability of cattle use in each study area. A wolf RSF model originally developed by Ausband et al. (2010)
mapping was applied to map study-area habitat types in terms of their relative suitability as wolf rendezvous sites.

resource selection Spatial relationships between cattle and wolf selectivity patterns were used to classify and map wolf-
cattle encounter risk to 5 classes (very high to very low) across each study area during the wolf
rendezvous period (15 June—15 August). Validation analyses using GPS-based, wolf-cattle encounter
observations (n = 200) revealed 84% of observed encounters occurred in areas of high- or very
high—encounter risk (class 4 or 5). About 75% of confirmed wolf depredations recorded among three of
four study areas were located in areas of high or very high risk. This new predictive understanding of
wolf-cattle encounter risk will greatly aid livestock producers, resource managers, and policy makers in
more effectively applying husbandry practices, allocating mitigation resources, and developing conflict
mitigation plans and policies applicable throughout the mountainous western United States and
potentially other regions of the world where wolves and cattle come into conflict.
Published by Elsevier Inc. on behalf of The Society for Range Management. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Beef cattle (Bos taurus L.) and gray wolves (Canis lupus L.) once
again co-occupy grazing lands of the mountainous western United
States. Since reintroduction into the Northern Rocky Mountains
(NRM) region in 1995—-1996, wolves have steadily recolonized their
historic range extents and are likely to continue to do so (Carroll
et al. 2012; USFWS 2015). Wolf-cattle conflict again became a
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serious management issue in the NRM not long after wolves were
reintroduced (Bangs et al. 1998, 2004; USFWS 1999). The scope of
this issue has since continued to increase with the growth and
expansion of wolf populations from the NRM into the Pacific
Northwest and northern California (Hayden 2017; CDFW 2018;
ODFW 2018; WDFW 2018).

1550-7424/Published by Elsevier Inc. on behalf of The Society for Range Management. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
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Mountainous cattle grazing lands in the NRM region typically
exhibit a high degree of spatial variability in terrain, hydrology,
vegetation, and human influence. This variability affects the space
use of both cattle and wolves (Oakleaf et al. 2006; Clark et al. 2014,
2016). Although some previous work has been done in the Upper
Midwest (Treves et al. 2004, 2011; Treves and Rabenhorst 2017), we
are only just beginning to understand how spatial variability may
influence the likelihood or risk that these two species will encounter
each and potentially come into conflict on mountainous grazing
lands of the NRM (e.g., Bradley and Pletscher 2005). This knowledge
gap is quite concerning because wolf-cattle encounters and associ-
ated predation threat may possibly result in economically important
losses of cattle productivity and increased disease susceptibility due
to stress, diet changes, and energy deficiencies (Laporte et al. 2010;
Cooke et al. 2013; Steele et al. 2013). These encounters can also
lead to wolf-caused depredation death and injury losses (NASS 2011;
CDFW 2018). Frequent encounters could even habituate wolves to-
ward cattle as their dominant prey source (Harper et al. 2005). Our
poor understanding of the spatial risk of wolf-cattle encounters
severely hinders our capacity to prevent or mitigate these impacts on
rangeland cattle production and sustainable wolf management. By
developing a predictive understanding of where wolf-cattle en-
counters are most and least likely to occur on these landscapes, we
can greatly enhance our opportunities to reduce wolf-cattle conflict
through more effective cattle husbandry practices, well-targeted
mitigation effort and resources, and better-informed planning and
policy making (Bradley and Pletscher 2005; Treves et al. 2011; Treves
and Rabenhorst 2017). A general approach for acquiring this pre-
dictive knowledge is to first, better understand the mutual habits
and resource selection patterns of wolves and cattle and second,
apply this understanding to predict encounter and conditional
depredation risks. A similar approach was used by Hebblewhite et al.
(2005) in a wolf-elk system in the NRM.

During summer (June—August), reproductive wolf packs use
rendezvous sites as part of a mobility strategy that allows adult
wolves to patrol and exploit portions of their territory which are
too distant from the natal den to allow frequent round-trip visita-
tions (Murie 1944; Kolenosky and Johnston 1967; Mech and Boitani
2003). When mature enough to leave the den, pups of the year are
carried or travel to rendezvous sites where, for several days or
weeks, they are attended to by some of the adults while others
leave on frequent forays. As such, use of a rendezvous site essen-
tially anchors the distribution and movement patterns of a repro-
ductive wolf pack to a single location, thereby concentrating wolf
presence at that location and nearby areas. Wolf presence levels
during the period of use, consequently, decline with distance from
the rendezvous site. Research in the NRM and other regions of the
world indicate wolf rendezvous sites most often occur in grassy,
flat, or gently sloping areas typically near perennial water sources
(Joslin 1967; Kolenosky and Johnston 1967; Unger 1999). Although
rendezvous sites can be in forested areas (Joslin 1967; Theuerkauf
et al. 2003), wet meadows are a common choice in the NRM. On
the basis of these commonalities, resource selection function (RSF)
models have proven highly successful for predicting the relative
suitability of habitat types as wolf rendezvous sites and thus pro-
vide an effective space-use indicator for reproductive wolf packs
during the summer rendezvous period (Ausband et al. 2010).

The cattle grazing season on mountainous grazing lands in the
NRM occurs during June-August which, also directly corresponds
with the time period when wolves are most actively using
rendezvous sites and associated areas. There is a considerable body
of literature indicating cattle avoid steep slopes (Mueggler 1965;
Cook 1966; Ganskopp and Vavra 1987) and prefer meadows and
other gently sloping vegetation types of relatively high herbaceous
productivity for summer foraging areas (Roath and Krueger 1982;
Gillen et al. 1984; Kaufmann et al. 2013). This knowledge of cattle

behavior has been applied using RSF models to successfully predict
cattle space use or resource selectivity within mountainous grazing
lands in the NRM (Clark et al. 2014, 2016).

The goal of this research study was to further enhance and
combine our understandings of wolf and cattle spatial behavior
during the summer grazing season such that we might then suc-
cessfully predict the spatial risk of wolf-cattle encounters and asso-
ciated depredation events. Specific objectives of the study were to 1)
develop spatial models that provide accurate and robust predictions
of cattle resource selection patterns within diverse, rugged, and
extensive mountainous grazing lands of western Idaho; 2) validate
an existing model for predicting the relative suitability of different
habitat types in western Idaho for use by wolves as rendezvous sites;
3) evaluate the spatial relationships between predicted cattle
resource selectivity and wolf rendezvous-site habitat suitability and
use these relationships to develop wolf-cattle encounter risk maps
for western Idaho grazing lands; 4) assess the performance of these
encounter risk maps for predicting the locations of actual wolf-cattle
encounters; and 5) evaluate the efficacy of encounter risk maps for
identifying where, on diverse and complex landscapes, wolf-caused
depredations are most likely to occur.

Materials and Methods

Approval for this study of beef cattle was obtained from the
Oregon State University, Institutional Animal Care and Use Com-
mittee (protocols 3654, 4168, and 4555). Procedures used in
handling and caring for cattle adhered to the Guide for the Care and
Use of Agricultural Animals in Agricultural Research and Teaching
(FASS 2010). Capture and handling of gray wolves for radio- and
GPS-collar installation were conducted as part of routine wolf
management operations by personnel from Idaho Department of
Fish and Game (IDFG) and US Department of Agriculture Animal
and Plant Health Inspection Service (APHIS) Wildlife Services in
accordance with IDFG-supplied training and the IDFG Wolf Foothold
Trapping Safety Protocol.

Study Areas

This research was conducted from 2009 to 2011 within selected
portions of four active US Department of Agriculture (USDA) Forest
Service (USFS) cattle grazing allotments located in western Idaho.
Pastures scheduled to be occupied by cattle during the 15 June to 15
August time period of each year, according to USFS grazing man-
agement plans, formed the study area within each allotment. These
study areas (n = 4) ranged in size from 48 to 112 km? and were
selected to be representative of the variability in topography,
parent materials, soil types, vegetation cover types, hydrology,
climate, and livestock management (e.g., herd composition,
breeding, calf age at entry), which typically exists in extensive,
mountainous cattle grazing lands of the NRM region. Selection was
also based on gray wolf presence. Well-established wolf pop-
ulations resided in and around all four study areas before the study
(Nadeau et al. 2008), and monitoring during the study indicated
wolf presence reached moderate or high levels in each study area
during each study year (see definitions later).

Study Area 1 (112 km?) was selected to typify a management
situation where cattle enter the grazing area on 15 June with
relatively young calves (2—2.5 mo of age). The dominant landform
of this study area was a dissected plateau with steep-walled can-
yons draining down the bounding slopes. Elevation ranged from
561 to 1834 m. Slope ranged from 0 to 57 degrees with a mean of 17
+ 11 standard deviation (SD) degrees. Cattle entered this study area
on the lower bounding slopes, climbed up the slopes as forage plant
phenology progressed, arrived atop the plateau in early July, and
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then spent the remainder of the study period (until 15 August)
grazing among the hillslopes and shallow drainages on the plateau.

Riparian vegetation along drainages at the lowest elevations of
Study Area 1 was dominated by willow (Salix sp. L), sedges (Carex
sp. L.), and rushes (Juncus sp. L) with Kentucky bluegrass (Poa
pratensis L.) and cheatgrass (Bromus tectorum L.) occurring on the
stream terraces. Steep walls of the plateau were vegetated by
bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Love)
and Idaho fescue (Festuca idahoensis [Elmer]) associations with
perennial forbs such as arrowleaf balsamroot (Balsamorhiza sag-
ittata [Pursh] Nutt.), parsnipflower buckwheat (Eriogonum her-
acleoides Nutt.), Cusick’s milkvetch (Astragalus cusickii A. Gray), and
Snake River phlox (Phlox colubrine Wherry & Constance) occa-
sionally occurring as codominants with the bunchgrasses (Johnson
and Simon 1987). The top of the plateau was vegetated by pine
savanna or open pine woodlands. Ponderosa pine (Pinus ponderosa
Lawson & C. Lawson) and bunchgrasses (e.g., Idaho fescue) domi-
nated the savannas. The open woodlands included a ponderosa
pine overstory, a shrub layer of common snowberry (Symphor-
icarpos albus [L.] S.F. Blake) and/or white spirea (Spiraea betulifolia
Pall.), and an herb layer of pinegrass (Calamagrostis rubescens
Buckley) and Geyers sedge (Carex geyeri Fernald) or Idaho fescue.
Ridge-tops between drainages atop the plateau often lacked forest
cover and were thus vegetated by perennial grasslands of blue-
bunch wheatgrass and Idaho fescue associations. Forests on more
mesic slopes and higher elevations contained both Ponderosa pine
and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco).

Soils in Study Area 1 had not yet been mapped. However, soil
surveys in nearby areas suggested the bunchgrasses areas in the
lower elevations were underlain by loamy-skeletal, mixed, super-
active, mesic vitrandic argixerolls, and pachic palexerolls. Open
forests atop the plateau were likely supported by loamy-skeletal,
isotic, frigid, vitrandic argixerolls. Soils in nonforested areas were
likely loamy-skeletal, mixed, superactive, mesic lithic argixerolls.

The Snake River Remote Automated Weather Station (RAWS ID =
SRFI1) located west of Cuprum, Idaho at 1 333-m elevation was the
most relevant climate station near Study Area 1. Long-term
(1998-2016) mean water-yr precipitation at this station was 546
mm (MesoWest 2018). Total precipitation values for the 2009, 2010,
and 2011 water yrs were 441, 484, and 537 mm, respectively. Long-
term (1998-2016) mean daily air temperatures for the months
of June, July, and August were 16.5°C, 23.0°C, and 22.3°C,
respectively.

Study Area 2 (48 km?) was selected to represent management
situations where calf age at entry was greater (3—3.5 mo) and base
elevation (1 011 m) of the grazing area was higher than in Study
Area 1. The dominant landform here was also a dissected plateau,
but in contrast to Study Area 1, most of the study area extent was
situated atop the plateau where the maximum elevation was 1 865
m. As such, although a wide range of slopes (0—62 degrees) were
present, this study area was generally flatter (X = 13 + 8.7 SD de-
grees) than Study Area 1. In addition, a larger extent of this study
area was forested than Study Area 1 and this was likely a conse-
quence of the higher base elevation and associated moisture
regime. Cattle entered Study Area 2 at midelevation and dispersed,
but, given the limited topography relief in this study area, seasonal
movement upslope was generally much less pronounced than at
Study Area 1.

The lower elevations of Study Area 2 (up to 1 200 m) occurred
along steep canyon walls vegetated by bluebunch wheatgrass and
Idaho fescue associations or sagebrush-grasslands dominated by
mountain big sagebrush (Artemisia tridentate Nutt. subsp. vaseyana
[Rydb.] Beetle) associations (Johnson and Simon 1987). Mid-
elevations were rolling mountain slopes vegetated by ponderosa
pine savanna on drier exposures and Douglas-fir forest on more
mesic slopes. Some ridgetops were nonforested being instead

vegetated by bunchgrass or sagebrush associations. The highest
elevations (above 1 600 m) were mountain slopes and ridges
vegetated by mixed conifer forests of Douglas-fir and grand fir as-
sociations. Dry meadows on stream terraces and other flat areas
were vegetated by Kentucky bluegrass (Poa pratensis [L.]) and Cal-
ifornia oatgrass (Danthonia californica Bol.). Tufted hairgrass
(Deschampsia cespitosa [L.] P. Beauv.), Hood’s sedge (Carex hoodia
Boott), and thick-head sedge (Carex pachystachya Cham. Ex Steud.)
dominated moist upland meadows. Aspen (Populus tremuloides
Michx.) occasionally occurred near springs and other moist areas.
Stream riparian areas at lower elevations were dominated by black
cottonwood (Populus balsamifera [L.] spp. Trichocarpa [Torr. & A.
Gray ex Hook.] Brayshaw), willow (Salix spp. [L.]), and Kentucky
bluegrass while willow and sedges (Carex spp. [L.]) dominated at
higher elevations.

Soils in the lower elevations of Study Area 2 were loamy-skeletal,
mixed, superactive, mesic vitrandic argixerolls and pachic palexe-
rolls (NRCS 2017d). At midelevations, loamy-skeletal, mixed,
superactive, mesic lithic argixerolls occurred in the nonforested
areas while open forests were underlain by loamy-skeletal, isotic,
frigid, vitrandic argixerolls. Soils at higher elevations were not yet
mapped. Climatic data from the Snake River RAWS (see earlier) were
assumed to also be representative of the climate in Study Area 2.

Study Area 3 (73 km?) was selected to typify situations similar to
Study Area 2 with older calves (3—3.5 mo at entry) and higher base
elevations than Study Area 1, but in this case, the dominant landform
was a mountain and the extents encompassed a large elevational
gradient from toeslopes (1 082 m) to the mountain summit (2 478
m). Cattle entered the study area at the very lowest elevations and, as
in Study Area 1, progressively followed forage plant phenology up-
slope reaching the mountain summit area in late July—early August
and remaining there until the end of the study period.

Stream riparian areas at the lowest elevations of Study Area 3
dominated by black cottonwood, willow, Kentucky bluegrass, and
sedges. Upland slopes at these low elevations (< 1 500 m) were
vegetated by bluebunch wheatgrass associations on the drier ex-
posures, while more mesic slopes contained open to moderately
closed woodlands dominated by ponderosa pine associations.
Douglas-fir and grand fir associations occupied the mesic exposures
at midelevations, and pine-bunchgrass savanna vegetated the drier
slopes. Open ridgetops and divides between drainages at mid-
elevations were vegetated by bunchgrass grasslands. Vegetation at
the highest elevations (> 2 000 m) was dominated by subalpine fir
(Abies lasiocarpa [Hook.] Nutt.) associations in forested drainages
and fescues (Festuca spp.[L.]) and upland sedges in open areas.

Soils at the lower elevations of Study Area 3 were fine-loamy,
mixed, superactive, mesic ultic argixerolls and frigid pachic ultic
argixerolls (NRCS 2018d). Forest soils at midelevations were loamy-
skeletal, mixed, superactive pachic argicryolls. Soils on open, mid-
elevation slopes were clayey-skeletal, smectitic lithic argicryolls.
Soils at higher elevations had not yet been mapped.

The NRCS Van Wyck SNOTEL station (ID = 979) located at 1 500
m elevation south of Indian Valley, Idaho was the most relevant
climate station near Study Area 3. Long-term (2002—2017) mean
water-year precipitation at this station was 663 mm (NRCS 2018c).
Total precipitation values for the 2009, 2010, and 2011 water yrs
were 650, 742, and 782 mm, respectively. Long-term (2002-2017)
mean daily air temperatures for June, July, and August were 15.6°C,
22.4°C, and 21.3°C, respectively.

Study Area 4 (83 km?) had the highest base elevation (1 248 m)
of the 4 study areas, and calf age at entry was about 3.5 mo. The
dominant landform was a mountain with two parallel ridgelines, a
V-shaped stream valley between, and maximum elevation of 2 582
m. Most of the study area extent was forested. Cattle entered at the
lowest elevations and moved upslope as the season progressed
similar to Study Areas 1 and 3.



PE. Clark et al. / Rangeland Ecology & Management 73 (2020) 30—52 33

The lowest elevations (< 1 600 m) of this study area were
vegetated by open ponderosa pine woodlands surrounding occa-
sional open hillslopes dominated by bunchgrasses. Pine associa-
tions gave way to Douglas-fir and grand fir associations at
midelevations. Shelter-wood silviculture treatments had also
created sparsely wooded patches of 10-60 ha distributed occa-
sionally across the midelevations. Stream riparian areas at mid-
elevations were generally forested with grand fir or Engelmann
spruce (Picea engelmannii Parry ex Engel.) overstory and contained
a shrub layer of willows and herb layer of rushes and sedges. Wet
meadows of willow and sedges also occurred at midelevations, but
these were very small (< 5 ha). At the highest elevations (> 1 950
m), subalpine fir (Abies lasiocarpa [Hook.] Nutt.) associations
dominated the forested areas and fescues and upland sedges
occurred in nonforested areas scattered among extensive granite
outcrops.

Pine woodlands at the lowest elevations occurred on fine-loamy
and loamy-skeletal, mixed superactive pachic argicryolls (NRCS
2018d). Soils on open hillslopes were clayey-skeletal, smectitic
lithic argicryolls. Loamy-skeletal, mixed superactive pachic argi-
cryolls and coarse-loamy, mixed, superactive lamellic haplocryepts
underlied the Douglas-fir and grand fir associations at mid-
elevations. Soils at higher elevations had not yet been mapped but
were coarsely textured and likely derived from granitic parent
materials.

The Brundage Reservoir SNOTEL station (ID = 370) located at 1
905 m elevation south of McCall, Idaho was the closest climate
station to Study Area 4. Long-term mean annual precipitation
(1987-2015) at the site was 1 271 mm (NRCS 2018a). Precipitation
totals for the 2009, 2010, 2011 water yrs were 1270, 1 209, and 1
516 mm, respectively. Long-term (1987-2015) mean daily air
temperatures for June, July, and August were 10.5°C, 16.0°C, and
14.9°C, respectively.

Cattle Data Collection

Beef cattle herds in the study areas ranged in size from 195 to
460 cow-calf pairs depending on study area size and stocking rates
of about 12—14 ha AUM~. These cattle were primarily of British
breeds or crosses. Each spring (2009—-2011) before entry, 10 mature
cows (4-10 yr of age) were randomly selected from the herd
associated with each study area. Generally, these mature cows had
multiple yrs of experience with the study area landscapes, climates,
and herd management actions. Each of the selected cows was fitted
with a custom GPS tracking collar (Clark et al. 2006), which
recorded the date, time, spatial position, speed, and positional ac-
curacy parameters every 5 min throughout the grazing season
(June—October). We assumed, on the basis of our random selection
process, that the variability in spatial behaviors expressed by the
GPS-collared cows were representative of the respective herds. The
GPS collars were retrieved, and data were downloaded as cattle
exited the grazing allotments in the fall. Resultant samples sizes,
however, were unequal among study areas and yrs due to collar
malfunctions and other contingencies. Consequently, to provide a
more equal sampling, 3 collared cows from the 10 cows potentially
available for each study area—yr combination were selected, on the
basis of completeness of GPS data record, for analysis under this
study. As the focus of this study was about predicting spatial risk of
wolf-cattle encounters during the 15 June—15 August period when
cattle were occupying summer ranges and reproductive wolf packs
were using rendezvous sites and associated areas, these 36 cattle
GPS data sets were truncated to this 2-mo focal period (hereafter
referred to as the “rendezvous period”).

Data from these 36 cattle collars were then processed to remove
gross GPS positioning error by using a Geographic Information
System (GIS) to exclude positions located outside the bounding

fences and other limiting perimeter features (e.g., impassable
rivers) of each study area. Next, an objective process was applied to
flag potentially erroneous positions for further scrutiny. Positions
having a Positional Dilution of Precision (PDOP) parameter value of
> 10 and/or an instantaneous speed value > 9.3 km/h (5 knots)
were flagged as potentially inaccurate. Positions indicating the cow
had traveled > 500 m during the 5-min sampling interval (i.e., a
sustained velocity of at least 6 km/h) were also flagged. Our pre-
vious experience conducting other studies within the region, where
continuous visual observation was used to evaluate cattle behavior,
indicated that it was rare for range cattle to sustain a velocity of > 6
km/h for 5-min duration (Clark et al. 2017a, 2017c). A custom
software package, Kinetic Resource and Environmental Spatial
System (KRESS) v. 4, was then used to visualize and individually
evaluate the flagged positions in context. Each flagged position was
displayed on a high-resolution digital elevation model (DEM) and/
or digital orthophotograph quadrangle (DOQ) background along
with > 10 of the preceding and following positions. A line con-
necting all these positions was overlain to illustrate the movement
trajectory. Flagged positions were subjectively evaluated to deter-
mine if they substantially departed from the general magnitude
and direction of movement along the GPS-based trajectory. Posi-
tions that did not deviate substantially from the trajectory were
accepted and retained in the data set. Positions exhibiting sub-
stantial deviation were further evaluated using the DEM and DOQ
to assess whether terrain or other landscape features could logi-
cally explain the departure from the trajectory. Positions failing this
secondary screening were rejected and removed from the data set.
The complete series of error-screening processes excluded an
average of 3.4% of the originally recorded positions from each collar
data set.

As a final processing step, the custom software program,
ASSOC1 (Weber et al. 2001), was used to determine if the three
cows selected under each study area—yr combination were
behaving spatiotemporally independent of each other (i.e., were
not associated). Associated behavior between or among collared
cows would violate the independence assumptions of resource
selection analyses conducted with these data (Hilbe 2008; Nielson
and Sawyer 2013). In this study, dyads that spent > 75% of their
time separated by > 75 m from each other were considered
nonassociated. These thresholds were based on those used in
previous range cattle behavior studies on mountainous grazing
lands in the region (Clark et al. 2014, 2016). In all cases, selected
cattle in this study were determined to be nonassociated. If an
associated dyad had been detected, one member would have been
randomly selected for replacement by one of the remaining
collared cows in the herd and the association test rerun.

A random sample of 25% of the cattle GPS positions from each
study area—yr combinations was extracted and reserved for model
validation. The remaining 75% of these data was retained for use as
model development data sets.

Wolf Data Collection

General wolf presence and wolf-cattle encounter frequency
within the four study areas were monitored during 2009-2011
using a combination of telemetry tracking (radio and GPS), scat
surveys, camera traps, den/rendezvous site surveys, direct obser-
vation, and depredation investigations. Clark et al. (2017b) pro-
vided specific descriptions of the wolf-monitoring methods used in
the present study. Data from all monitoring sources were used to
classify wolf presence and encounter frequency to three levels: low,
moderate, and high. Presence/encounter classifications were sum-
marized for each of the 3 summer mo (June, July, and August).
Months when no wolf presence was detected, despite rigorous
sampling effort, were classified to the low-presence/encounter
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Table 1
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Predictor variables used to develop the a priori set of candidate models evaluated at Study Area 3 for predicting resource selection patterns of mature beef cows on moun-

tainous grazing lands.

Type Predictor Data type Statistic or class Units
Topographic Elevation Raster Mean Meters
Slope Raster Mean Degrees
Aspect Thematic Raster North NA
Thematic Raster East NA
Thematic Raster South NA
Thematic Raster West NA
Thematic Raster Flat NA
Roughness Raster Index NA
Profile curvature Raster Index NA
Vegetation Greenness (NDVI) Raster Index NA
Cover type Thematic Raster Altered grassland Proportion
Thematic Raster Upland grassland Proportion
Thematic Raster Sagebrush Proportion
Thematic Raster Mesic shrublands Proportion
Thematic Raster Herbaceous-dominated riparian Proportion
Thematic Raster Shrub-dominated riparian Proportion
Thematic Raster Riparian forest Proportion
Thematic Raster Ponderosa pine Proportion
Thematic Raster Douglas-fir Proportion
Thematic Raster Grand fir Proportion
Thematic Raster Lodgepole pine Proportion
Thematic Raster Mixed fir/pine forest Proportion
Thematic Raster Aspen Proportion
Thematic Raster Mixed broadleaf/conifer forest Proportion
Thematic Raster Mixed mesic forest Proportion
Thematic Raster Mixed subalpine forest Proportion
Thematic Raster Mesic montane parkland/subalpine meadow Proportion
Thematic Raster Nonvegetated Proportion
Distance Perennial streams Vector Minimum Meters
Roads Vector Minimum Meters

NDVI indicates Normalized Difference Vegetation Index.

class. The moderate class was assigned to months when wolf
presence was detected but no evidence of cattle pursuit events or
depredations were recorded. The high presence/encounter class
was reserved for months when pursuit events and/or depredations
were documented within the study area.

Wolf presence and wolf-cattle encounter frequency varied with
time and among study areas with Study Area 1 tending to have
higher levels during summer mos (June, July, and August) than
Study Areas 2 and 4, but all three study areas experienced at least
moderate wolf presence during > 1 mo (e.g., July) during all 3 study
yrs (Clark et al. 2017b). Although wolf den and rendezvous sites
were located about 9 km north of Study Area 3, wolf presence here
was generally lower than at the three other study areas.

Monitoring of wolf presence, encounters, and movement pat-
terns was intensified at Study Area 1 during the 2009 study yr. An
adult male wolf from the Snake River pack (n = 11 individuals, 5
adults, and 6 pups of the yr) was captured by USDA APHIS Wildlife
Services on 22 May 2009 and instrumented with a custom GPS
collar (Clark et al. 2006) as a wolf-management response to dep-
redations occurring near Study Area 1. The GPS collar recorded the
position of this wolf every 15 min throughout the summer, fall, and
winter of 2009. These GPS data were processed to identify and
remove gross positioning error in nearly the same fashion as those
for the collared cattle. The exception was that these wolf data were
not clipped to boundary features as was done for the cattle data. For
the purposes of this study, the wolf GPS data set was then truncated
to the 15 June—15 August rendezvous period.

This GPS-collared wolf was directly observed, from aircraft and
ground, on at least six recorded occasions over the course of the
2009 rendezvous period. During each occasion, the wolf was
observed in close company with one to five members of the Snake
River pack. Comparison of GPS positions for this wolf with biweekly
telemetry flight positions (GPS-based) recorded for the VHF radio-
collared, alpha female of the Snake River pack indicated these two

wolves were < 250 m of each other during each observation.
Consequently, there is strong evidence the movements of the GPS
collared adult male wolf were effectively representative of the
movements of the Snake River pack in general.

Cattle Resource-Selection Analyses

Resource selection by GPS-collared cattle in the four study areas
was modeled using a negative-binomial (NB) regression approach
described in detail by Nielson and Sawyer (2013) and previously
applied on other mountainous grazing lands in the region (Clark
et al. 2014, 2016). These regression models were RSFs as defined
by Manley et al. (2002) but differed from logistic regression—based
RSFs, which are more typically applied. Standard methods using
logistic regression to estimate the exponential RSF (Manly et al.
2002) with samples for used and available locations do not assess
the intensity of use but rather treat a habitat unit as used, regard-
less of whether that area was visited once or multiple times. The NB
regression used here goes further and actually does assess intensity
of use. Negative-binomial regression only slightly increases the
complexity of the sampling process, and model fitting routines are
widely available in current statistical software. Model coefficients
were estimated using the following equations (1 and 2) (Nielson
and Sawyer 2013):

ln(E[ll]) =ln(t0tal)+50+61X1 + +;8po, [1]
which is equivalent to

In(E[l;/total]) = In(E[Relative Frequency;])

:50+61X1 + o +5pxp7 [2]

where [; is number of GPS locations within sampling uniti (i =1, 2,
..., 2 193); total is total number of GPS locations within the entire
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Table 2

Top 12 cattle resource selection function (RSF) models, based on negative binomial regression, for each of 3 study yr at Study Area 3, selected from an a priori set of 184
candidate models based on Akaike’s information criterion (AIC) fit scores. Model in bold font was selected as the final cattle (RSF) model, and the model in italics was the

runner-up.
Rating Models by study year’ AAIC
2009
1 y = slope + slope? + roads + roads? + streams + streams? + ppine + mixedfirpine 0
2 y = slope + slope? + roads + streams + ppine + mixedfirpine 85.5
3 y = slope + roads + roads® + streams + ppine + mixedfirpine 143
4 y = slope + roads + streams + streams? + ppine + mixedfirpine 185
5 y = slope + roads + streams + ppine + mixedfirpine 225
6 y = slope + slope? + streams + streams? + mixedfirpine + ripforest + roughness 849
7 y = slope + streams + streams? + mixedfirpine + ripforest + roughness 940
8 y = slope + slope? + streams + mixedfirpine + ripforest + roughness 1080
9 y = slope + streams + mixedfirpine + ripforest + roughness 1210
10 y = slope + slope? + streams + streams? + sagebrush + shrubrip + mixedalpine 1280
11 y = slope + slope? + roads + roads? + streams -+ streams? + ppine + aspect 1290
12 y = slope + roads + roads® + streams + ppine + aspect 1320
2010
1 y = slope + slope? + roads + roads? + streams -+ streams? + ppine + aspect 0
2 y = slope + slope? + roads + streams + ppine + aspect 389
3 y = slope + roads + roads® + streams + ppine + aspect 90.1
4 y = slope + roads + streams + streams? + ppine + aspect 116
5 y = slope + roads + streams + ppine + aspect 122
6 y = slope + slope? + roads + roads? + streams + streams? + aspect + procurve 202
7 y = slope + roads + roads? + streams + aspect + procurve 291
8 y = slope + slope? + roads + roads® + streams + streams? + sagebrush + aspect 299
9 y = slope + slope? + roads + streams + aspect + procurve 374
10 y = slope + roads + roads® + streams + sagebrush + aspect 420
11 y = slope + slope? + roads + streams + sagebrush + aspect 452
12 y = slope + roads + streams + streams? + aspect + procurve 474
2011
1 y = slope + slope? + roads + roads? + grandfir + shrubrip + aspect 0
2 y = slope + slope? + roads + roads® + streams + streams? + sagebrush + aspect 26.2
3 y = slope + slope? + roads + roads? + streams + streams? + aspect + procurve 96.8
4 y = slope + slope? + roads + roads? + streams + streams? + ppine + aspect 100
5 y = slope + roads + roads? + grandfir + shrubrip + aspect 188
6 y = slope + roads + roads® + streams + sagebrush + aspect 216
7 y = elevation + elevation® + streams —+ dfir + aspect + procurve 235
8 y = elevation + elevation? + streams + streams® + dfir + aspect + procurve 237
9 y = slope + slope? + roads + roads? + streams + streams? + uplgrassl + procurve 238
10 y = slope + slope? + roads + roads? + streams + streams? + sagebrush + uplgrassl 259
11 y = slope + slope? + roads + roads? + mixedmesicfor + mixedfirpine + uplgrassl 297
12 y = slope + roads + roads’ + streams + ppine + aspect 308

1 Slope indicates terrain slope (deg); roads are distance to nearest road (m); streams are distance to nearest perennial stream (m); ppine is ponderosa pine (prop.);
mixedfirpine is mixed fir and pine forest (prop.); ripforest is riparian forest (prop.); roughness is topographic roughness (index); sagebrush is sagebrush (prop.); shrubrip is
shrub-dominated riparian (prop.); mixedalpine is mixed alpine forest (prop.); aspect is terrain aspect (cardinal direction); procurve is terrain profile curvature (index);
grandfir is grand fir (prop.); elevation is terrain elevation (m); dfir is Douglas-fir (prop.), uplgrassl is upland grasslands (prop.); mixedmesicfor is mixed mesic forest (prop.);

and superscript “2” indicates values have been squared.

study area; (8, is an intercept term; (4, ..., fp are unknown co-
efficients for the predictor variables Xj, ..., Xp; and E[.] represents
the expected value. The offset term, In(total) serves to convert the
integer counts of the response variable to relative frequency values.

The general modeling approach used here involved 5 steps. First,
a GIS was used to create virtual, circular plots which were randomly
distributed throughout the study area and attributed with values
from predictor variable data layers (e.g., terrain slope, vegetation
greenness, distance from perennial streams). Second, for popula-
tion models, GPS data for all collared animals were pooled and then
counts were made of any GPS positions that were located within
each virtual plot. Third, a candidate set of negative-binomial
regression models was fitted to determine which combination of
predictor variables best predicted the relative probability of cattle
use within the study area. Fourth, a bootstrapping procedure was
applied using the individual cattle GPS data sets to derive standard
errors and confidence intervals for population model coefficients.
Finally, the best negative-binomial regression model was used to
create a raster map of predicted probability-of-use classes for the
study area.

Specifically, initial sets of circular plots were digitally generated
at random locations within each study area. Counts of GPS positions
located within these plots were then tallied for each study area—yr

combination using a custom script written in the R programming
language. Next, zero inflation (i.e., where too many plots contain no
GPS positions) was considered because this sampling problem can
cause issues in modeling resource selection. In some cases, one
could consider using zero-inflated or hurdle models (Nielson et al.
2013), but such necessities are rare. Rather zero inflation cases are
often correctable because they usually stem from wrongly identi-
fying which parts of the landscape are truly available to GPS-
tracked animals. In the present study, cattle were contained in
extensive but fenced pastures, so the availability space was well
defined by the pasture boundaries. Nonetheless, checks for zero
inflation were advisable and thus conducted by comparing the
number of sampled zeros (i.e., plots containing no GPS positions) to
the number expected in a standard NB distribution given the mean
and variance of the sampling data, along with the sample size.
Several choices of plot size and number were iteratively evaluated
to find a suitable balance that provided position counts, which well
approximated a negative-binomial distribution while also allowing
effective detection of variability in animal movement and intensity
of use among plots (Nielson and Sawyer 2013). Choices where plots
were too small in size and/or too few in number tended to under-
sample the GPS positions present while choices with plots too large
and/or too many failed to detect variability in animal use. A good



36 PE. Clark et al. / Rangeland Ecology & Management 73 (2020) 30—52

Table 3

Fitted coefficients and statistics for the final cattle resource selection function (RSF) model applied at each of the four study areas for each of 3 study yr. P values significant at

the 0.05 alpha level are highlighted in bold font.

Study Area 1 2009 2010 2011

Predictor Estimate SE! P value Estimate SE P value Estimate SE P value
(Intercept) —4.92e+00 3.99e-01 < 2e-16 —6.74e+00 5.65e-01 < 2e-16 —5.67e+00 3.39e-01 < 2e-16
Slope —4.94e-02 6.03e-02 0.4125 4.76e-01 1.04e-01 4.85e-06 1.74e-01 5.63e-02 0.0020
Slope? —2.92e-03 1.52e-03 0.0556 —3.16e-02 4.48e-03 1.87e-12 —1.44e-02 1.86e-03 131e-14
North 2.62e-01 3.28e-01 0.4257 —9.48e-01 4.82e-01 0.0491 —5.74e-01 2.55e-01 0.0244
East 6.62e-01 2.96e-01 0.0253 —6.64e-01 3.28e-01 0.0427 2.82e-01 2.02e-01 0.1619
South 8.31e-01 2.99e-01 0.0054 2.89e-01 3.21e-01 0.3676 —6.13e-01 2.12e-01 0.0038
West 6.92e-01 2.94e-01 0.0188 3.50e-01 3.18e-01 0.2709 —6.15e-02 2.07e-01 0.7662
Roads —1.36e-03 5.39e-04 0.0116 —6.89e-04 2.00e-03 0.7302 1.42e-03 9.58e-04 0.1380
Roads? 1.74e-06 3.57e-07 1.08e-06 —1.12e-05 5.20e-06 0.0321 —6.43e-06 1.93e-06 0.0009
Streams —1.31e-03 6.38e-04 0.0402 —3.74e-03 6.49e-04 8.29e-09 —4.73e-03 4.19e-04 < 2e-16
Streams? —6.46e-07 6.04e-07 0.2846 4.24e-06 5.15e-07 < 2e-16 4.86e-06 3.33e-07 < 2e-16
PPine 5.42e-01 2.85e-01 0.0567 1.15e+00 3.11e-01 0.0002 1.32e+00 2.04e-01 9.66e-11
Study Area 2 2009 2010 2011

Predictor Estimate SE P value Estimate SE P value Estimate SE P value
(Intercept) —3.92e+00 3.01e-01 < 2e-16 —1.23e+00 3.51e-01 0.0005 —2.62e+00 3.04e-01 < 2e-16
Slope —4.40e-01 4.99e-02 < 2e-16 —6.77e-01 5.81e-02 < 2e-16 —5.37e-01 5.05e-02 < 2e-16
Slope? 9.20e-03 1.50e-03 8.12e-10 1.55e-02 1.73e-03 < 2e-16 1.29e-02 1.51e-03 < 2e-16
North 6.86e-01 2.12e-01 0.0012 6.53e-01 2.50e-01 0.0090 —5.00e-02 2.16e-01 0.8170
East —8.95e-01 2.10e-01 2.02e-05 —5.14e-01 2.46e-01 0.0367 —3.66e-01 2.08e-01 0.0792
South 1.57e-01 2.45e-01 0.5234 1.03e-01 2.91e-01 0.7223 —5.75e-01 2.52e-01 0.0226
West —1.13e-01 1.92e-01 0.5580 —4.08e-01 2.27e-01 0.0728 —1.01e+00 1.97e-01 2.90e-07
Roads 3.64e-03 6.58e-04 3.29e-08 3.90e-03 7.86e-04 7.47e-07 5.45e-03 6.74e-04 8.36e-16
Roads? 3.59e-07 8.43e-07 0.6700 —1.83e-07 9.92e-07 0.8534 —2.88e-06 8.61e-07 0.0008
Streams 2.31e-03 3.24e-04 1.17e-12 —1.25e-05 3.90e-04 0.9745 4.65e-04 3.29e-04 0.1579
Streams? —7.33e-07 1.76e-07 3.11e-05 —1.79e-07 2.15e-07 0.4064 —6.55e-08 1.80e-07 0.7160
PPine 4.60e-02 2.20e-01 0.8340 —7.10e-01 2.69e-01 0.0084 5.03e-02 2.26e-01 0.8236
Study Area 3 2009 2010 2011

Predictor Estimate SE P value Estimate SE P value Estimate SE P value
(Intercept) —5.28e+00 7.56e-01 3.47e-12 —6.56e+00 7.03e-01 < 2e-16 —8.59e+00 8.29e-01 < 2e-16
Slope —8.77e-02 8.88e-02 0.3235 9.24e-02 8.10e-02 0.2539 3.13e-01 1.01e-01 0.0020
Slope? —1.86e-03 2.29e-03 0.4174 —5.10e-03 2.07e-03 0.0137 —1.03e-02 2.66e-03 0.0001
North 1.25e+00 4.92e-01 0.0111 —3.79e-01 4.72e-01 04214 —2.76e-01 5.18e-01 0.5937
East 1.39e+00 5.00e-01 0.0054 —1.08e+00 4.82e-01 0.0251 —6.35e-01 5.26e-01 02274
South 8.57e-01 4.99e-01 0.0861 —1.06e+00 4.80e-01 0.0278 9.11e-02 5.23e-01 0.8618
West 9.00e-01 4.90e-01 0.0662 —5.26e-01 4.70e-01 0.2634 2.90e-01 5.12e-01 0.5713
Roads 3.34e-04 1.85e-04 0.0706 3.23e-04 1.65e-04 0.0508 1.92e-03 2.90e-04 4.18e-11
Roads? —2.31e-07 5.86e-08 8.14e-05 8.11e-08 4.95e-08 0.1016 —1.49e-06 1.42e-07 < 2e-16
Streams 2.39e-03 6.02e-04 7.54e-05 1.92e-03 5.61e-04 0.0006 1.26e-03 6.08e-04 0.0386
Streams? —7.96e-07 5.67e-07 0.1603 —5.13e-07 5.32e-07 0.3348 —7.98e-07 5.85e-07 0.1725
PPine —2.52e+00 3.18e-01 3.03e-15 1.57e+00 2.87e-01 4.68e-08 —6.53e-02 2.95e-01 0.8250
Study Area 4 2009 2010 2011

Predictor Estimate SE P value Estimate SE P value Estimate SE P value
(Intercept) —5.81e+00 4.19e-01 < 2e-16 —5.96e+00 3.41e-01 < 2e-16 —8.15e+00 4.28e-01 < 2e-16
Slope 1.96e-01 7.34e-02 0.0076 2.05e-01 6.00e-02 0.0006 3.31e-01 7.12e-02 3.53e-06
Slope? —1.18e-02 2.28e-03 2.24e-07 —1.26e-02 1.89e-03 2.88e-11 —1.06e-02 2.09e-03 3.99e-07
North —1.39e+00 4.01e-01 0.0006 —1.44e+00 3.15e-01 4.68e-06 1.28e-01 3.64e-01 0.7258
East —2.52e-03 2.99e-01 0.9933 —2.45e-01 2.41e-01 0.3093 —1.32e+00 2.97e-01 9.12e-06
South —4.91e-01 3.18e-01 0.1222 —1.36e+00 2.58e-01 1.55e-07 —6.95e-01 3.13e-01 0.026476
West —2.20e-01 3.03e-01 0.4670 —1.47e+00 2.46e-01 2.60e-09 —6.74e-01 3.00e-01 0.024656
Roads —1.45e-03 3.86e-04 0.0002 —6.71e-04 3.15e-04 0.0333 —4.48e-04 3.67e-04 0.2215
Roads? 7.79e-07 2.27e-07 0.0006 5.62e-07 1.84e-07 0.0023 1.14e-07 2.13e-07 0.5941
Streams —3.41e-04 6.07e-04 0.5737 2.62e-03 6.38e-04 3.98e-05 2.92e-03 8.15e-04 0.0003
Streams? 1.49e-07 5.57e-07 0.7896 —3.50e-06 7.06e-07 7.37e-07 —4.94e-06 9.55e-07 2.36e-07
PPine 1.15e+00 3.52e-01 0.0011 1.76e+00 2.87e-01 8.94e-10 1.71e+00 3.34e-01 3.20e-07

1 Model standard errors presented here were calculated, as were the coefficient estimates, by pooling Global Positioning System data across individual cattle.

compromise was found using 1 500 plots of 500 m in diameter for
Study Areas 2, 3, and 4 during all study yrs. Given its larger extent, 2
500 plots of 500-m diameter were used for Study Area 1 during all
yIS.

A GIS was then used to attribute each plot of a study area with
values for nine predictor variables (Table 1). Topographic predictors
were derived from 10-m digital elevation models (DEM) sourced
from the US Geological Survey. Plots were attributed for the
elevation predictor using the mean of all 10-m DEM elevation cells,

which were intersected by a plot. Aspect was initially derived as the
azimuth bearings for all 10-m cells intersected by a plot. This
continuous variable was then converted to a categorical variable
with five classes to thus include aspects generalized to four cardinal
directions (+ 45 azimuth bearing degrees) and flat areas (< 10-
degree slope), which served as the reference class. Normalized
surface or topographic roughness index values were derived from
the 10-m DEM using a GIS to calculate the mean values for 3 x 3 cell
neighborhoods (ESRI 2018c). These neighborhood means or
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Table 4

Spearman rank correlation scores (r;) quantifying the prediction success of the final
cattle resource selection function (RSF) model for each study area—yr combination
and for application of the model at all four study areas using Global Positioning
System data pooled across all study yrs.

Yr All Yrs
Study area 2009 2010 2011 Pooled
1 0.9489 0.9667 0.9834 0.9925
2 0.9789 0.9714 0.9741 0.9545
3 0.9383 0.9594 0.9545 0.9789
4 0.9474 0.9774 0.8060 0.9203

roughness values from the resulting grid were then normalized
using the following equation:

Riormalized = [(roughness — gridmin)/(gridmin — gridmin)] e 100
3]

where Rpormalized 1S the normalized surface roughness index value;
roughness is the mean elevation value for each neighborhood;
gridmin is the minimum roughness value for the entire grid; and
gridmax is the maximum roughness value for the entire grid
(Ausband et al. 2010). A profile curvature index was derived using a
standardized GIS routine based on the 10-m DEM, 3 x 3 cell
neighborhoods, and a fourth-order polynomial (ESRI 2018b). A
vegetation greenness predictor was based on Normalized Differ-
ence Vegetation Index (NDVI) values derived from Landsat 7 ETM+
satellite imagery (NASA, Washington, DC). Digital number values
from a Landsat scene (Path 42: Row 29) acquired 17 July 2002 were
converted to reflectances, and the standard NDVI equation was
applied to the reflectance values (Lillesand et al. 2008). This specific
Landsat scene was used, instead of contemporary scenes from 2009
to 2012, because this same scene was used by Ausband et al. (2010)
to derive the NDVI data applied in their three-variable model for
wolf resource selection throughout west-central Idaho (see later).
The resultant 30-m NDVI raster grid was then resampled to 10-m
cell size using the cubic convolution method. As with the topo-
graphic predictors, plots were attributed for NDVI using the mean
value for all raster cells intersected by a plot. Vegetation cover type
predictors were developed from 18 thematic vegetation-type
classes created using Landsat TM imagery (Redmond et al. 1997).
Plots were attributed with a value for each vegetation type (i.e., 18
values per plot). Values ranged from O to 1 and were based on the
areal proportion of the plot intercepted by raster cells of each
vegetation type. In other words, values represented proportional
plot coverage by each vegetation type. Distance predictors such as
distance to the nearest perennial stream or road were derived as
the minimum horizontal distance (m) from a plot centroid to the
nearest vector line representing a perennial stream or road
segment. A quadratic form for each distance predictor, as well as for
slope and elevation, was created by squaring the linear values.

A set of 184 candidate cattle RSF models, composed of up to 5 of
these predictor variables, was identified a priori (Burnham and
Anderson 2002). Model ranking and final selection were then
conducted at Study Area 3, where wolf presence and associated
predation threat were consistently lower and thus least likely to
have had a confounding influence on cattle resource selection
patterns compared with other study areas. The intent here was to
minimize complex and hidden interactions with confounding fac-
tors and select models whose predictive performance was more
directly and exclusively dependent on our short list of simple, easily
measured environment and habitat predictors (see Table 1). Con-
ducting model selection at Study Area 3, consequently, was ex-
pected to yield cattle RSF models, which were robust and generally
applicable to other regional sites regardless of wolf presence levels

at those sites. All models in the candidate set were fitted to GPS
position data from the model development data sets for Study Area
3. Model fitting was conducted separately for each study yr. Fitted
models were then ranked on the basis of the Akaike’s information
criterion (AIC) score (Akaike 1973; Burnham and Anderson 2002). A
short list of the 12 best-fitting models was developed for each yr.
From these short lists, the model giving the best, most robust AIC
fits, when considered across all 3 yr, was selected as the final cattle
RSF model.

The final model was then applied to the remaining three study
areas to further evaluate its robustness and general applicability.
The model was fit using the GPS position data sets (model devel-
opment) from each study area—yr combination. Prediction perfor-
mance of the fitted model from each combination was then
evaluated with a Spearman rank correlation analysis using the GPS
position data sets previously reserved for model validation (Boyce
et al. 2002; Sawyer et al. 2009). This analysis examines the rela-
tionship between the ranking of predicted probability of cattle use
classes (n = 20 ranked classes) and the counts of GPS positions
occurring within plots classified to each of these classes. Cases
where counts progressively increased with increasing class rank
indicated strong correlation and successful model predictive per-
formance. Spearman rank scores were compiled for each study
area—yr combination.

The final model was also fitted and evaluated at each study area
using GPS data pooled across all 3 study yr to thus provide a set of
four population RSF models for use in additional analyses. Standard
errors and confidence intervals (90%) were calculated for the co-
efficients of each these four population RSF models using a boot-
strapping routine drawing 1 000 replicate samples from the model
development data sets.

Cattle resource selection patterns were mapped for each study
area by applying the fitted population model coefficients within a
GIS. For each study area extent, spatial data layers for each of the
predictors in the final cattle RSF model were loaded in the GIS. The
model coefficients were then applied to their respective data layers,
using the modeler function within the GIS, to output a resultant
raster grid where each 10-m cell was assigned a proportional value
representing the predicted probability of cattle use (ESRI 2018d).
This raster was then classified into 10 ranked classes using an
equal-area classification scheme from which a color-coded cattle
RSF map was produced for each study area (ESRI 2018e).

Wolf Resource Selection Analyses

Ausband et al. (2010) applied a simple, three-variable logistic
regression model to predict the relative suitability of different
habitat types for wolf rendezvous sites at four study areas in
mountainous central Idaho. This wolf RSF model included NDVI,
normalized surface roughness, and profile curvature as predictors.
They used 178 documented rendezvous site locations to validate
the predictive performance of their RSF model. In the present study,
habitat types within a rectangular region (762 km?) encompassing
all four of our western Idaho study areas were classified, using the
Ausband et al. (2010) model and their coefficient values, according
to relative suitability as wolf rendezvous sites. The same GIS pro-
cedures described earlier for cattle RSF mapping were used to
create 10-class wolf rendezvous site habitat suitability map with
10-m grid cells for this rectangular region.

Predictive performance of the wolf RSF map was evaluated using
a small data set of documented rendezvous sites (n = 14 sites) in-
side or nearby our four study areas. At each study area, counts of
rendezvous sites in the different mapped habitat suitability classes
were made. For rendezvous sites not occurring in the very highest
suitability class (class 10), the distance between the site and the
nearest area of that class was determined. Spearman rank
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Table 5

Fitted coefficients and statistics for the final cattle resource selection function (RSF) model applied for each of the four study areas using Global Positioning System (GPS) data
pooled across all study yrs. While the coefficient estimates are based on pooled GPS data, the 90% confidence level (CL) were calculated from bootstrapped samples from
individual cattle data sets. P values significant at the 0.05 alpha level are highlighted in bold font.

Study Area 1

Predictor Estimate Lower 90% CL Upper 90% CL P value
(Intercept) —4.95e + 00 —5.72e + 00 —4.10e + 00 < 2e-16
Slope 2.02e-02 —4.91e-02 1.38e-01 0.6542
Slope? —5.68e-03 —1.33e-02 —3.90e-03 2.77e-06
North —5.33e-01 —1.00e + 00 7.47e-02 0.0242
East —5.80e-02 —5.46e-01 5.10e-01 0.7755
South 3.39e-02 —4.59e-01 4.24e-01 0.8689
West 5.56e-02 —3.52e-01 4.44e-01 0.7846
Roads —1.41e-03 —1.98e-03 2.38e-04 3.86e-04
Roads? 1.58e-06 —6.05e-06 2.42e-06 2.24e-09
Streams —3.11e-03 —5.79e-03 —1.45e-03 4.04e-15
Streams? 2.47e-06 5.69e-07 5.50e-06 4.19e-14
PPine 7.31e-01 3.78e-01 1.21e + 00 2.26e-04
Study Area 2

Predictor Estimate Lower 90% CL Upper 90% CL P value
(Intercept) —2.94e + 00 —3.54e + 00 —2.24e + 00 < 2e-16
Slope —5.19e-01 —5.98e-01 —4.62e-01 < 2e-16
Slope? 1.17e-02 1.02e-02 1.41e-02 < 2e-16
North 4.35e-01 2.50e-01 6.59e-01 9.75e-04
East —5.17e-01 —9.30e-01 —2.37e-01 5.94e-05
South —9.08e-02 —3.62e-01 1.38e-01 0.5536
West —3.94e-01 —6.41e-01 —1.77e-01 9.96e-04
Roads 4.25e-03 3.46e-03 5.22e-03 < 2e-16
Roads? —7.82e-07 —1.66e-06 —5.66e-08 0.1355
Streams 1.16e-03 5.06e-04 1.72e-03 9.07e-09
Streams? —3.61e-07 —5.77e-07 —9.49e-08 0.0010
PPine —1.19e-01 —3.71e-01 1.05e-01 0.3877
Study Area 3

Predictor Estimate Lower 90% CL Upper 90% CL P value
(Intercept) —6.434e + 00 —7.20e + 00 —5.70e + 00 < 2e-16
Slope 8.039e-02 —5.83e-02 2.31e-01 0.1178
Slope? —5.100e-03 —9.41e-03 —1.53e-03 1.10e-04
North 2.366e-01 —2.92e-01 7.51e-01 0.4204
East 2.764e-01 —3.50e-01 6.81e-01 0.3543
South —4.835e-02 —5.07e-01 3.45e-01 0.8710
West 2.437e-01 —1.14e-01 5.27e-01 0.4043
Roads 2.373e-04 —3.96e-04 9.64e-04 0.0220
Roads? —7.129e-08 —4.31e-07 1.24e-07 0.0241
Streams 1.503e-03 2.86e-04 3.15e-03 1.45e-05
Streams? —3.776e-07 —1.63e-06 6.11e-07 0.2518
PPine 1.264e-01 —8.09e-01 7.21e-01 0.4782
Study Area 4

Predictor Estimate Lower 90% CL Upper 90% CL P value
(Intercept) —5.75e + 00 —6.85e + 00 —5.19e + 00 < 2e-16
Slope 1.01e-01 8.47e-03 2.81e-01 0.0118
Slope? —6.67e-03 —1.25e-02 —3.96e-03 2.64e-08
North —2.98e-01 —1.64e + 00 4.05e-01 0.1687
East —4.41e-01 —7.56e-01 —1.67e-01 0.0108
South —8.55e-01 —1.44e + 00 —4.35e-01 3.46e-06
West —6.64e-01 —1.14e + 00 —2.77e-01 1.58e-04
Roads —3.38e-04 —1.49e-03 3.84e-04 0.1211
Roads? 1.98e-07 —2.80e-07 7.16e-07 0.1171
Streams 1.01e-03 2.23e-04 2.43e-03 6.39e-03
Streams? —1.51e-06 —3.44e-06 —6.08e-07 2.67e-05
PPine 1.78e + 00 1.01e + 00 242e + 00 < 2e-16

correlation analysis was used to examine the relationship between
counts of sites in suitability classes and the ranking of those classes.

An additional case-study analysis was conducted at Study Area 1
to evaluate whether habitat types classified as having relatively
high suitability for wolf rendezvous sites also tended to have higher
wolf presence during the rendezvous period than habitat types of
lower suitability. The GPS tracking data set acquired during 2009
for an adult male wolf of the Snake River pack was used in this
analysis. GPS positions were acquired at 15-min intervals, yielding
6 591 positions within the study area boundaries during the

rendezvous period. Counts of positions located in the different
mapped habitat suitability classes were made. Another Spearman
rank correlation analysis was conducted for counts and class
ranking.

Wolf-Cattle Encounter Risk Mapping
Spatial relationships between cattle resource selection patterns

and relative habitat suitability for wolf rendezvous sites were
evaluated as a means of predicting the risk of wolf-cattle
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Figure 1. Map of predicted cattle relative probability of use (10 classes) during the wolf rendezvous period (15 June—15 August), derived using the final cattle resource selection
function (RSF) model and cattle Global Positioning System (GPS) data pooled across 3 study yr (2009—2011), for Study Area 1 (112 km?) in mountainous grazing lands of western
Idaho. Positions (n = 86 470) from nine GPS-collared mature beef cows (3 cows per study yr) are also displayed relative to roads, streams, and hill-shaded terrain shape.

encounters within the four study areas. For each study area, the
raster grid map of classified relative probability of cattle use was
overlain on the wolf rendezvous site habitat suitability map in a GIS
and coregistration was confirmed. Because both the cattle and wolf
RSF maps used the same ranked 10-class value scheme, there were
100 unique combinations of class values possible between coinci-
dent raster cells from each map. Counts of occurrences for each of
these 100 combinations were made in the GIS (ESRI 2018a). Simi-
larity in the spatial distributions of class values in the cattle and
wolf RSF maps was evaluated using a weighted Spearman rank
correlation analysis in which the occurrence counts were used as
weights. Findings of similarity between the two maps would allow
spatial prediction of wolf-cattle encounter risk.

Wolf-cattle encounter risk maps were created for each study
area using the coregistered cattle and wolf RSF maps. Ten risk
classes were derived by applying the following equation within a
GIS:

Risk = ([CRSF + WRSF] — abs[CRSF — WRSF])/2 2]

where Risk is the risk class, CRSF is the cell value from the cattle RSF
map, and WRSF is the cell value for the wolf RSF map (ESRI 2018d).
Areas classified to class 10 in both the cattle and wolf resource
selection maps were predicted to have the highest probability of
cattle-wolf encounters during the rendezvous period and thus

were included in the highest class (10) of the encounter risk map. It
follows then that areas strongly avoided by cattle and of poor wolf
rendezvous site suitability (class 1 in both cases) were included in
the very lowest encounter-risk class (1). The reader should note,
however, that this simple equation does not yield an equal-area
classification of risk.

Although these 10-class encounter risk maps were logical
products of combining the 10-class cattle and wolf RSF maps and
were useful for some analyses requiring detailed spatial risk clas-
sification, practical experience quickly demonstrated that simpler,
more readily interpretable 5-class risk maps would be more
effective for management applications. Five-class maps were
created by simple combination of class pairs from the 10-class
maps.

Risk Map Validation

Rigorously validating conflict-mitigation tools like these wolf-
cattle encounter risk maps would typically be challenging as
direct observation data for wolf-cattle encounters are rare and
difficult to acquire. Fortunately, the GPS tracking data sets
collected for wolves and cattle at Study Area 1 provided the op-
portunity to conduct a case-study validation of the 5-class risk
map. Concurrent GPS tracking data acquired in 2009 for 10
collared beef cows (5-min GPS samples) and one collared adult
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Figure 2. Map of predicted cattle relative probability of use (10 classes) during the wolf rendezvous period (15 June—15 August), derived using the final cattle resource selection
function (RSF) model and cattle Global Positioning System (GPS) data pooled across 3 study yr (2009—2011), for Study Area 2 (48 km?) in mountainous grazing lands of western
Idaho. Positions (n = 151 280) from nine GPS-collared mature beef cows (3 cows per study yr) are also displayed relative to roads, streams, and hill-shaded terrain shape.

male wolf (15-min samples) representing the movement of the
Snake River pack (n = 11 wolves) were used to identify GPS-based,
wolf-cattle encounters during the rendezvous period. Concurrent
wolf and cattle GPS positions (+ 450 s) located within 500 m of
each other were considered wolf-cattle encounters. The assump-
tion behind the 500-m threshold distance was that either wolves
or cattle or both, through sensory perception, would become
aware of the other species presence at this distance, even if direct
line of sight was occluded. Researchers investigating wolf-elk re-
lations suggested 1 km was a reasonable threshold for wolf-elk
encounters (Middleton et al. 2013; Cusack et al. 2019). Cattle are
typically expected to be less vigilant than elk, so the 500-m
threshold used here was considered reasonable and appropriate.
About 716 occurrences met these encounter criteria; however, not
all could be considered independent encounter events. In some
cases, multiple collared cows encountered the wolf during the
same time frame. If these cows were separated by > 75 m from
each other, then each wolf-cow encounter was considered an

independent event. The assumption being cattle dyads separated
by > 75 m were not behaviorally associated. Otherwise, only a
single-encounter event was recorded and this event was randomly
assigned to just one of the cows involved. In these and other cases,
an encounter might also involve multiple consecutive 15-min wolf
GPS positions, thus potentially lasting up to several hours in
duration. Only the initial position of an extended encounter was
considered an independent event. Encounter events ended with
an interruption of at least 15 min in duration. On the basis of these
criteria, 200 of the 716 occurrences were identified as indepen-
dent wolf-cattle encounters. These 200 GPS-based encounter po-
sitions were then overlain on the wolf-cattle encounter risk map
for Study Area 1, and counts were tallied for encounters occurring
in each of the five risk classes. A Spearman rank correlation
analysis was used to assess the relationship between counts and
class ranking. Distances between encounter locations and the
nearest area of the very high risk class (class 5) were compared
with those for random points (n = 200). As the distributions for
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Figure 3. Map of predicted cattle relative probability of use (10 classes) during the wolf rendezvous period (15 June—15 August), derived using the final cattle resource selection
function (RSF) model and cattle Global Positioning System (GPS) data pooled across 3 study yr (2009—2011), for Study Area 3 (73 km?) in mountainous grazing lands of western
Idaho. Positions (n = 129 925) from nine GPS-collared mature beef cows (3 cows per study yr) are also displayed relative to roads, streams, and hill-shaded terrain shape.

both distance samples were highly left-skewed, a Mann-Whitney
U-test was used for the comparison.

Depredation Risk

A small data set of cattle depredations (n =16), confirmed as
wolf caused by USDA APHIS Wildlife Services, was used to evaluate
the efficacy the wolf-cattle encounter risk maps for predicting the
relative spatial risk of wolf depredation. At three of the four study
areas, counts were made of depredations occurring within each of
the five mapped risk classes. No depredation data were available for
Study Area 4. The very small sample sizes of depredations at indi-
vidual study areas did not allow specific analyses. Instead, depre-
dation count data for all study areas were pooled and a Spearman
rank correlation analysis was conducted on these pooled data.

At the three relevant study areas, distances between depreda-
tions locations and the nearest area of the very high risk class were
calculated for comparison with distances for random points (n =
200). Distance data were pooled across study areas, and the
depredation and random sample means were compared with a
Mann-Whitney U-test.

Results
Cattle Resource Selection

Table 2 lists the top 12 cattle resource selection models for each
of the 3 yr at Study Area 3. These top models were selected, on the
basis of AIC fit score rankings, from the set of 184 a priori candidate
models. Just two models, one a simpler derivative of the other, were
found to consistently occur among the top models across all 3 study
yr. Both of these negative-binomial regression models contained

five predictors—slope, distance from roads, distance from peren-
nial streams, ponderosa pine cover, and aspect—but differed
regarding inclusion of the quadratic forms for the slope and
streams predictors. The more complex model, presented in bold
font in Table 2, was selected as the final cattle RSF model for this
study as it consistently had better AIC fits than the simpler, runner-
up model (presented in italics in Table 2).

The final cattle RSF model was then evaluated for robustness by
fitting to GPS data from all four study areas for each of the 3 study
yr. Model fit results for each of these 12 study area—yr combina-
tions are presented in Table 3. While the relative importance of the
individual predictors within the model varied considerably among
these situational cases, the model remained remarkably effective
for accurately predicting the relative probability of cattle use
(hereafter referred to as “predicted use”) within this broader, more
diverse scope. Spearman rank correlation analysis, using the GPS
data sets previously reserved for model validation, yielded high
prediction success (rs > 0.93) for 11 of 12 cases (Table 4). Further-
more, in these 11 cases, the model performed on par or even
somewhat better in Study Areas 1, 2, and 4 than in Study Area 3,
where the model was developed. While even in the exceptional
case, Study Area 4 during 2011, the Spearman score was still quite
high (rs = 0.81), the evident reduction in prediction success relative
to the other cases suggested additional influential factors may have
been at play in this specific situation. Questions about this case are
explored later. Meanwhile, it is clear from the Spearman rank re-
sults that the predictive performance of this cattle RSF model was
quite robust across a broad spatiotemporal scope.

As a side note, for a separate publication, the authors fit all 184
models from the original candidate set to each of the 12 study area
by yr combinations. In addition, they also fit a much larger candi-
date set (1139 models) involving both the original set plus models,
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Figure 4. Map of predicted cattle relative probability of use (10 classes) during the wolf rendezvous period (15 June—15 August), derived using the final cattle resource selection
function (RSF) model and cattle Global Positioning System (GPS) data pooled across 3 study yr (2009—2011), for Study Area 4 (83 km?) in mountainous grazing lands of western
Idaho. Positions (n = 127 961) from nine GPS-collared mature beef cows (3 cows per study yr) are also displayed relative to roads, streams, and hill-shaded terrain shape.
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Figure 5. Predicted cattle relative probability of use response to the terrain slope (degrees) predictor, in the final cattle resource selection function model, for each of four study

areas in mountainous grazing lands of western Idaho.

which included other predictors based on terrain indices (e.g.,
topographic roughness [TRI], position [TPI], and wetness [TWI])
and slope-position classifications. Some models certainly per-
formed better for some study area—yr combinations than others.
However, this more extensive testing again confirmed that the
original final model was the best in terms of overall robustness in
performance across all combinations.

With a robustly effective cattle RSF model then in hand, a
simpler composite set of results was then needed for further
analysis and presentation. Therefore, the final model was fitted
for each study area using GPS data pooled from across all 3 study
yr. Spearman rank analysis was again applied and yielded scores
(rs) of 0.99, 0.95, 0.98, and 0.92 for Study Areas 1, 2, 3, and 4,
respectively, thus confirming the final model performed effec-
tively as a population model (see Table 4). Predicted cattle
resource selection patterns for each study area are presented in
Table 5 and Figures 1-4.

Because the relationship between predicted cattle use patterns
and suitable wolf rendezvous site habitat types was a principal
interest of this study, a performance comparison between the final
cattle RSF model and the simple, three-variable model described by
Ausband et al. (2010) was conducted. The latter model was fitted for
each study area using the pooled cattle GPS data and Spearman
rank analyses were conducted for model performance. While this
simpler model, with an entirely different set of predictors, did not
perform as well as the final model, it did in some cases successfully
predict cattle use patterns (rs range 0. 46—0.97, see online supple-
mentary Table S1, available online at https://doi.org/10.1016/j.rama.
2019.08.012).

Specific Responses to Predictors

Predicted cattle responses to the individual predictors within
the final model were then evaluated across the four study areas
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Figure 6. Predicted cattle relative probability of use response to the distance to nearest road (m) predictor, in the final cattle resource selection function (RSF) model, for each of four

study areas in mountainous grazing lands of western Idaho.

based on fits using GPS data pooled across yrs. Generally, predicted
cattle use decreased in a curvilinear fashion with increasing slope
(Fig. 5). Cattle at Study Area 2 were predicted to be the most sen-
sitive to slope, exhibiting a sharp decline as slope increased from
2.2 degrees to about 10 degrees and then use levels flattened out
with minimum predicted use occurring at about 22 degrees. Cattle
at the other three study areas were predicted to exhibit a more
sigmoidal decline in use with increasing slope. Peak use occurred
on slopes of < 10 degrees, and slopes of > 25 degrees were largely
avoided. Only the quadratic form of slope was significant at Study
Areas 1 and 3. It is notable that predicted use at Study Area 4
initially increased with slope before peaking at about 7 degrees and
then declining.

In most cases, predicted cattle use increased with distance from
roads (Fig. 6). Predicted use at Study Area 1 exhibited a slight initial
decline with distance to a minimum at 445 m and then remained
low out to about 1 500 m, where use then inclined sharply to a

maximum at 1 866 m. A gentler curvilinear increase in predicted
use with distance occurred at Study Area 2, where the rate of
increasing use was initially moderate and steepened at about 750
m. Maximum use occurred at 1 274 m. Although predicted cattle
use at Study Area 3 did initially increase with distance from roads,
maximum use occurred at about 1 665 m and then use declined
with minimum use occurring at about 4 011 m. Predicted use,
however, was relatively high (> 0.6) along the entire distance range
for Study Area 3. Distance to roads was not a significant predictor of
cattle resource selection at Study Area 4.

Predicted cattle use generally increased with distance from
perennial streams, but there was some variability among study
areas in the details of this response (Fig. 7). Like the response
to distance from roads, predicted cattle use at Study Area 1
initially declined slightly, reaching a minimum at 628 m,
remained quite low out to about 1 500 m from streams, and
then increased abruptly reaching a maximum at 2 004 m. These
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Figure 7. Predicted cattle relative probability of use response to the distance to nearest stream (m) predictor, in the final cattle resource selection function model, for each of four

study areas in mountainous grazing lands of western Idaho.

responses to roads and streams seem to run counter to the
mapped predicted cattle resource selection patterns for Study
Area 1 (see Fig. 1), which suggest cattle prefer areas near roads
and streams. This apparent discrepancy is further explored in
the Discussion section later. Predicted cattle use exhibited
nearly linear increases, at least initially, with distance from
streams at both Study Areas 2 and 3. However, while maximum
predicted use was reached at 1 212 m for Study Area 3, pre-
dicted use at Study Area 2 peaked at 1 602 but then declined
with further distance from streams. Study Area 4 was again a
somewhat exceptional case, where predicted use started rela-
tively high (> 0.8) near streams and initially increased with
distance but peaked at 334 m and then declined with
increasing distance to a minimum level at 1 562 m.

Predicted cattle response to terrain aspect varied among study
areas. Cattle at Study Area 1 were 0.587 times (0.368, 1.08 CL 90%)

as likely to use areas with northerly aspects compared with flat
areas (< 10 degrees slope). Predicted use of other aspects did not
differ from that of flat areas. At Study Area 2, cattle were 1.54 times
(1.28, 1.93 CL 90%) as likely to use northerly aspects, 0.596 times
(0.395,0.789 CL 90%) to use easterly aspects, and 0.674 times (0.527,
0.838 CL 90%) to use westerly aspects as they were flat areas. No
significant effect of aspect on predicted cattle use was detected at
Study Area 3. Cattle at Study Area 4 were less likely to use of
easterly (0.644 odds with 0.470, 0.846 CL 90%), southerly (0.425
with 0.237, 0.647 CL 90%), and westerly aspects (0.515 with 0.320,
0.758 CL 90%) than flat areas.

Predicted cattle use at Study Area 1 increased by 0.733% (0.379%,
1.22% CL90%) with each percentage point increase in areal coverage
by the ponderosa pine vegetation type. At Study Area 4, predicted
cattle use increased by 1.79% (1.02%, 2.45% CL 90%) with each per-
centage point increase in ponderosa pine. No significant effects of
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Figure 8. Map of predicted relative habitat suitability for wolf rendezvous sites (10 classes), derived using the Ausband et al. (2010) wolf resource selection function (RSF) model
and their coefficients, for Study Area 1 (112 km?) in mountainous grazing lands of western Idaho. Locations of documented wolf rendezvous sites (n = 6) are also displayed relative

to roads, streams, and hill-shaded terrain shape.

ponderosa pine cover on predicted cattle use were detected at
Study Areas 2 and 3.

Cattle resource selection patterns at the four study areas can be
summarized with just a few lines. Cattle were predicted to strongly
select for areas of relatively low slope (< 10 degrees). These areas
could be near streams and/or roads but most often occurred as
meadows, benches, saddles, or flat ridgetops quite distant from
streams and roads. In some cases, areas dominated by ponderosa
pine were selected for, particularly if those areas were also rela-
tively flat. Cattle quite strongly avoided steep slopes (< 20 degrees),
particularly those that were sparsely vegetated or had relatively
low forage productively.

Wolf Resource Selection

Figure 8 is a map of predicted relative habitat suitability for wolf
rendezvous sites (10 classes), derived using the Ausband et al.
(2010) wolf RSF model and their coefficients, for Study Area 1.
Predicted habitat suitability maps for the other three study areas
are provided online in the supplementary materials (Figs. S1-S3,
available online at https://doi.org/10.1016/j.rama.2019.08.012).
Although Ausband et al. (2010) had effectively validated this wolf
resource selection model for their study areas in central Idaho,
further validation was required for the present application in
western Idaho. Unfortunately, documented rendezvous site

location data were not available within most of the present study
areas. Data were available, however, for Study Area 1, where six
documented rendezvous sites were occupied by the Snake River
wolf pack in 2009 (Fig. 8). These rendezvous sites were well
distributed across the extent of the study area and thus served as a
small but effective validation set. When overlain on the habitat
suitability map for Study Area 1, all six sites occurred in areas
classified to either class 10, very highest suitability (5 sites) or class
9, very high rendezvous site suitability (1 site). In this latter case,
the documented site location was within 11 m of areas classified to
be the very highest suitability class.

While documented wolf rendezvous sites did not occur within
the remaining three study areas, there were eight documented sites
nearby (4—21 km distant) and being located within the wolf RSF-
mapped region encompassing all the study areas were thus suit-
able for use in model validation. One rendezvous site occurred 4 km
northwest of Study Area 2 and was in an area classified to the very
high suitability class (9). This site was located only 2 m from an area
of the very highest class. Four other rendezvous sites were located
6—9 km north of Study Area 3. Two of these four sites occurred in
the very high class (class 9) and were within 10 m and 20 m of areas
classified to the very highest suitability class. One of the remaining
sites occurred in the high-moderate class (class 7) and was located
within 51 m of areas classified to the very highest suitability class.
The fourth site occurred in the low (class 3) suitability class but was
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Figure 9. Map of predicted wolf-cattle encounter risk (five classes), derived from the combination of maps for predicted cattle relative probability of use and for relative habitat
suitability for wolf rendezvous sites, for Study Area 1 (112 km?) in mountainous grazing lands of western Idaho. Also shown are locations of Global Positioning System—detected
wolf-cattle encounters (n = 200) and confirmed wolf-caused depredations (n = 11) relative to roads, streams, and hill-shaded terrain shape.

located < 103 m from areas predicted to have the very highest
suitability for wolf rendezvous sites. Three additional rendezvous
sites occurred about 14—21 km north or northwest of Study Area 4.
Two of these three sites were in areas classified to the very highest
suitability class. The third site occurred in high suitability (class 8),
was adjacent to (8 m) areas in the very high class, and was within
82 m of areas in the very highest suitability class. A Spearman rank
correlation score (rs = 0.77), based on the total of 14 documented
rendezvous site locations, indicated there was a strong correlation
between counts of sites within suitability classes and the ranking of
these classes.

Predicted wolf rendezvous—site habitat suitability for the four
study areas can be summarized quite simply. Habitat types with the
very highest suitability were areas of flat or gently sloping concave
terrain. Contrary to descriptions by Ausband et al. (2010), these
habitat types were most often forested. The conifer and, in some
cases, aspen or cottonwood tree canopy in the present study
resulted in the relatively high NDVI or vegetation greenness values
that Ausband et al. associated with highly suitable rendezvous site
habitat. While often occurring along perennial stream courses,
these habitat types were also frequently located in the heads of
small side canyons where stream flow was seasonal or ephemeral.
Those very highest suitability habitat types that did occur in open
areas were typically located at relative high elevation near the
heads of major drainages. Habitat types of very lowest suitability

occurred on steep slopes, particularly southerly or westerly aspects,
which were relatively sparsely vegetated. Apart from most very
highly suitable habitat types being forested, these findings align
quite well with those reported by Ausband et al. (2010) for their
model application in central Idaho.

These results then beg the question, if habitat types can be
effectively classified and mapped with regards to their relative
suitability as wolf rendezvous sites, would one then expect to
observe higher wolf presence during the rendezvous season (15
June—15 August) in habitat types of the very highest rendezvous-
site suitability compared with those of lower suitability classes?
This question was evaluated in Study Area 1 using GPS tracking data
from the adult male wolf representing the Snake River pack during
the rendezvous period of 2009. Of the 6 591 positions acquired in
this study area during the rendezvous period, about 26.3% (1734) of
the positions were located in areas classified to the very highest
rendezvous site suitability class (class 10). An additional 27.3% (1
798) of the positions occurred in the very high class; thus com-
bined, more than half (53.6%) of the positions from this wolf
occurred in the top two suitability classes. A Spearman rank anal-
ysis comparing counts of positions within classes to ranking of
those classes yielded a very high score of 0.988, indicating spatial
presence levels of this wolf, and probably the Snake River pack in
general, were strongly correlated with predicted habitat suitability
for rendezvous sites.
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Predicting Wolf-Cattle Encounters

Coregistered cattle and wolf resource selection maps were
evaluated as a means of predicting the spatial risk of wolf-cattle
encounters within the four study areas. The weighed Spearman
rank correlation analysis indicated strong similarity existed be-
tween the cattle and wolf maps for all study areas except Study
Area 2, where the similarity was weak (rs = 0.20) but still significant
(P < 0.05). Spearman scores for Study Areas 1, 3, and 4 were 0.70,
0.51, and 0.58, respectively. These results suggested a positive
relationship existed, during the 15 June—15 August time period,
between predicted cattle resource selection patterns and wolf
rendezvous site habitat suitability patterns. On the basis of the final
RSF model, cattle were predicted to select for meadows, benches,
saddles, and other relatively flat and productive areas. These same
areas were classified by the Ausband et al. (2010) model as very
highly suitable for wolf rendezvous sites. Cattle were predicted to
avoid areas of steep slopes, especially those only sparsely vege-
tated, and these same areas were also predicted to have very low
suitability as wolf rendezvous sites.

Wolf-cattle encounter risk maps were created for each study
area using these coregistered cattle and wolf maps.
Figures representing these 10-class encounter risk maps are
included in the online supplementary materials associated with
this paper (Figs. S4—S7, available online at https://doi.org/10.1016/j.
rama.2019.08.012). Simpler, more easily interpretable 5-class risk
maps, however, were found to be more useful for management
applications. The 5-class wolf-cattle encounter risk map for Study
Area 1 is illustrated in Figure 9.

Case-Study Validation of Risk Map

Concurrent wolf and cattle GPS tracking data acquired in 2009
during the rendezvous period were used in a case-study validation
of the wolf-cattle encounter risk map for Study Area 1. About 62% of
the 200 independent encounters, identified with these concurrent
GPS data, occurred in the very high risk class (class 5; see Fig. 9).
The top two risk classes accounted for 84% of all encounters. The
moderate-, low-, and very-low-risk classes contained 24, 8, and
0 encounters, respectively. The Spearman rank correlation analysis
indicated a strong correlation (rs = 0.99) between encounter counts
and risk class ranking. Wolf-cattle encounters occurred a mean
distance of 32.7 + 46.5 SD m (range 0—253 m) from areas classified
to the very high risk class. Mean distance between random points
(n = 200) and areas of the very high risk class was considerably
longer at 237 + 309 SD m (range 0—1 650 m, P < 0.0001). Combined,
these results clearly demonstrate the risk map was highly suc-
cessful at predicting where, within the rugged and diverse land-
scape represented by Study Area 1, wolf-cattle encounters were
most likely to occur.

Predicting Depredation Risk

The case study described above revealed the spatial risk of wolf-
cattle encounters can be accurately predicted, and although this
knowledge is quite important for management, a critical question is
still unanswered. Does increased spatial knowledge of encounter
risk lead to greater predictability of where depredation events will
occur within rugged and remote cattle grazing lands? Fortunately, a
small data set of confirmed wolf depredations (n = 16) was avail-
able to address this question at three of the four study areas.

At Study Area 1, five of 11 (45.5%) confirmed depredations
occurred in areas classified to the very high wolf-cattle encounter
risk class (class 5). About 72.7% of the 11 depredations occurred
within the top two risk classes. One depredation each occurred in
the remaining three risk classes. The mean distance between

depredation locations and areas classified to the very high risk class
was 25.9 + 42.6 m SD (range of 0—132 m).

Two cattle depredations were confirmed in Study Area 2, and
both occurred in the high-risk class (class 4). These depredations
were a mean distance of 21.2 + 27.4 m SD (range of 12.5—51.2 m)
from the nearest areas of the very highest risk class.

Three depredations occurred at Study Area 3, two in areas
classified to high risk (class 4) and one in low risk (class 2). The
mean distance between depredation locations and areas classified
to the very highest risk class was 34.6 + 51.1 m SD (range of
2.6-93.5 m). No confirmed depredation data were available for
Study Area 4.

The Spearman rank correlation analysis using depredation
count data pooled across all study areas indicated the wolf-cattle
encounter risk map effectively predicted spatial risk of wolf-
caused depredation (rs = 0.77). The Mann-Whitney U-test also
using pooled data demonstrated the mean distance between
depredation locations and nearest areas of the very high risk class
(28.3 + 40.3 m SD) was shorter than between random points and
nearest areas of this class (181 + 219 m SD; range 1.6—1 650 m; P <
0.0001). Although the sample sizes of confirmed depredation lo-
cations used for validating the wolf-cattle encounter maps of these
three study areas were quite small, these results do lend some
evidence that increased spatial knowledge of cattle-wolf encounter
risk will help us better understand and predict where wolf-caused
livestock death and injury losses are most likely to occur on
mountainous cattle grazing lands.

Discussion
Previous Spatial Risk Modeling Work

Spatial risk modeling is a common analytical means for pre-
dicting and mapping relative risk across landscapes. These analyses
are often used to assess potential consequences of environmental
contamination (Li et al. 2007; Carlon et al. 2008), natural disasters
(Jaiswal et al. 2002; Keef et al. 2009), disease transmission (Tachiiri
et al. 2006; Beck-Worner et al. 2007), and crime and human conflict
(Kennedy et al. 2011; Rustad et al. 2011). Risk modeling is also an
effective means of spatially quantifying the risk of predator-
livestock conflicts (Mech et al. 2000; Miller et al. 2015a, 2015b).
Considerable work has been conducted in the Upper Midwest to
predict spatial risk of wolf-caused depredations (Treves et al. 2004,
2011; Edge et al. 2011; Treves and Rabenhorst 2017), but research in
the NRM is limited (e.g., Bradley and Pletscher 2005; Hanley et al.
2018a, 2018b). A matched-pair analysis approach, contrasting
sites affected and unaffected by depredation, was developed and
applied in Wisconsin and Minnesota (Treves et al. 2004) and also
applied in Michigan (Edge et al. 2011) to predict wolf depredation
risk at township (92 km?) and farm-vicinity scales (10 km?). Risk
mapping was done with a state-wide scope, but only at the town-
ship scale, which was certainly useful for broad-scale management
planning and policy making but finer-scale mapping, is also criti-
cally needed. Working in Idaho and Montana, Bradley and Pletscher
(2005) also contrasted depredated and nondepredated sites but at
the finer, fenced-pasture scale (~201 ha) and determined predictors
such as elk presence, pasture size, cattle herd size, vegetation cover,
and distance from human residences affected wolf depredation risk
while husbandry predictors did not. However, neither the work in
the Midwest nor the NRM effectively incorporated wolf and cattle
spatial behavior into modeling approaches except through rather
coarse measures (e.g., wolf pack range extents). Rather than relying
entirely on data from past depredations, which no doubt carry with
them some degree of hidden bias, the resource-selection modeling
approach applied in the present study began by first understanding
wolf and cattle space-use behaviors, then identified consequent
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spatial overlaps, and finally predicted wolf-cattle encounter and
conditional depredation risks based on these modeled behavioral
responses. The limitations, implications, and impacts of this RSF
modeling approach to spatial risk prediction are discussed in this
section.

Robustness of Cattle RSF Model

The Spearman rank score for model predictive performance
was notably lower for Study Area 4 in 2011 (rs = 0.81) than for any
other study area-yr combination (rs > 0.93). Additional factors
were likely affecting cattle selectivity in this case. Plots of the 2011
cattle GPS positions relative to GIS layers for elevation and vege-
tation cover types revealed cattle largely remained in the lower-
elevation portions of the study area and generally occupied open
or sparsely wooded areas throughout most of the summer grazing
season. Specifically, these positions were clustered on bunchgrass-
dominated hillslopes, openings within ponderosa pine forest,
areas where shelter-wood silviculture treatments had created
sparse tree canopy, and at midelevations, in small meadows sur-
rounded by extensive granite outcrop. These selectivity patterns
were a clear departure from those of 2009 and 2010 when cattle
were initially clustered under forest canopy at lower elevations,
moved progressively up through forested slopes and stream
courses as the season advanced, and finally were distributed
among subalpine meadows in late summer. Median elevation of
cattle positions in 2011 (1 571 m) was about 377 m and 442 m
lower than the medians for 2009 and 2010. Combined, these re-
sponses to elevation and vegetation cover type suggest climate,
specifically an unusually deep and lingering snow pack, played a
role in shaping cattle resource selection patterns in 2011. Peak
snow water equivalent (SWE) for the 2011 water yr at the
Brundage Reservoir SNOTEL station (ID = 370) near Study Area 4
was 980 mm on 3 May 2011, which was 383 mm and 246 mm
greater and occurred 20 and 31 d later than peak SWE during 2010
and 2009, respectively (NRCS 2018a). The last SWE value (i.e.,
indicating the last measurable presence of snow) recorded at this
station in 2011 was on 27 June, which was 20 and 28 d later than
2010 and 2009, respectively.

Given the unusual snow conditions in 2011, cattle at Study Area
4 seemed to have selected for openings and other sparsely wooded
areas where snow had melted out earlier than areas shaded by
forest canopy and/or at higher elevations where snow would have
lingered well into the summer, thus delaying cattle access and
forage production. Study Area 4 has the highest base elevation of
the four study areas and thus was the most susceptible to late
snow-cover anomalies. Although annual precipitation amounts
were higher than long-term averages at some of the other climate
stations in 2011, the unusual snow conditions and resultant cattle
selective patterns observed at Study Area 4 did not extend to the
other study areas (MesoWest 2018; NRCS 2018c). Therefore, even
when confronted with an anomalous situation, the cattle RSF
model actually performed quite well at Study Area 4 during 2011,
regardless of its comparison with the other study area—yr
combinations.

Distance from Roads and Streams

The map of predicted cattle use patterns for Study Area 1, at first
glance, seems to indicate cattle would select for areas located near
roads and perennial streams (see Fig. 1). Conversely, a look at the
fitted response curves for the road and stream distance predictors
(see Figs. 6-7) seems to suggest cattle would make little use of
areas within 1 500 m of roads and perennial streams. Clearly, there
is some complexity here that needs to be worked out. Cattle were
generally predicted to select for the eastern portion of this study

area, including areas that happened to be near roads and streams,
and to largely avoid the western portion. In so doing, cattle would
also avoid areas near and up to a considerable distance (e.g., 1 500
m) from the roads and extensive stream network situated in the
western portion of the study area. Therefore, while distance to
roads and streams were significant components of the cattle RSF
model at Study Area 1, the nature of their influence was complex
and likely interactive with terrain slope and other predictors.
Generally, slope differed considerably between the eastern portion,
located on the relatively flat or rolling top of the plateau, and the
western portion of the study area, which occurred on the complex
boundary slopes of the plateau. Cattle were predicted to select for
areas of < 10 degrees slope, which occurred primarily in the eastern
portion, and avoid areas of steep slopes (> 20 degrees), which
generally occurred in the western portion. Furthermore, among
available flat or gently sloping areas, cattle were predicted to select
specifically for those areas dominated by ponderosa pine cover. As
such, slope and pine cover were the primary and secondary drivers
of cattle selectivity and distance to roads and streams seemed to
have played tertiary, and less readily interpretable, supporting roles
at Study Area 1.

Applicability Scope

Inclusion of ponderosa pine predictor into the final cattle RSF
model may seemingly limit the effective scope of this model and
the cattle-wolf encounter risk mapping supported by it. Although
ponderosa pine occurs widely throughout the western United
States (NRCS 2018b), this vegetation type is generally confined to
relatively low-moderate elevations. This raises the question “Will
the cattle RSF model perform adequately for grazing areas located
entirely above the ponderosa pine zone?” Unfortunately, this
question cannot be fully resolved without additional testing at
grazing areas of this type. However, given the effective perfor-
mance of the cattle RSF model at Study Areas 3 and 4, which
contained extensive areas in the mixed conifer and spruce-fir
zones well above the ponderosa pine zone, it is reasonable to
expect the model will perform well enough for initial applications.
Further evaluations of the model under these applications may
then reveal the need for refinement or specificity (e.g., perhaps
replacement of the ponderosa pine predictor with mixed conifer).
A follow-on application of this research is planned for two study
areas in central Idaho, where cattle have been GPS tracked since
2005 and which are located entirely above the ponderosa pine
zone (Breck et al. 2012). Five additional study areas in north-
eastern Oregon with cattle GPS tracking data will also be used to
evaluate the robustness of the cattle RSF model (Clark et al. 2017a,
2017b).

This discussion prompts an additional point concerning eleva-
tional limits. Ausband et al. (2010) cited unpublished data indi-
cating documented wolf rendezvous sites in Idaho all generally
occurred below 2 765 m elevation. In fact, these workers con-
strained validation of their habitat suitability maps to below this
elevational threshold. This wolf selectivity response is probably
explained by thermal constraints. Nights are typically quite cold at
high elevations, even in summer; thus, rendezvous sites estab-
lished above this threshold would expose wolf pups to adverse
thermal stress (but see Mech 1993). Thermal conditions and other
elevational effects may also constrain the distribution of wild un-
gulate prey, which could, in turn, also influence wolf selectively. If
wolf rendezvous sites and thus concentrated wolf presence during
the rendezvous period are constrained below this or a similar ele-
vational threshold, then by extension the wolf-cattle encounter risk
mapping concept presented here would also be constrained by that
threshold.
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Limited Validations

Validation of the wolf RSF model for rendezvous site habitat
suitability was limited by the rather small sample of documented
rendezvous sites (n = 14) associated with the four study areas.
However, Ausband et al. (2010) thoroughly validated the model at
their central Idaho study areas, about 10—150 km east of the pre-
sent study areas, using a large sample of 178 rendezvous sites.
Results from the present study largely conform to those from
Ausband et al. (2010), thus providing some confidence this simple
three-variable model is quite robust. Nevertheless, there were
some discrepancies to address. Although Ausband et al. described
most of their surveyed rendezvous sites as being in wet meadows,
most areas classified to the very highest suitability class at the four
western Idaho study areas were forested rather than meadow
settings. In addition, 11 of the 14 documented rendezvous sites in
the present study were located in forested areas. Of the remainder,
one was on an open, relatively dry slope and only two were in wet
meadows. The wolf biology literature certainly provides evidence
wolves use forested areas as rendezvous sites (Ballard and Dau
1983; Theuerkauf et al. 2003; Capitani et al. 2006). Therefore, it
seems both wet meadows and forested areas, particularly those on
flat or gently sloping terrain near perennial water sources, can
provide very highly suitable rendezvous sites. Discrepancies be-
tween wolf resource selection observations in central and western
Idaho may then simply stem from differing availability of wet
meadow areas rather than the robustness of the wolf RSF model.

The wolf-cattle encounter risk maps developed in this study
were validated using a large sample of GPS-based encounter ob-
servations (n = 200) but only at one of the four study areas.
Collection of concurrent and intensive GPS observations of sym-
patric wolves and cattle was arguably the most effective and least-
biased approach for validating the encounter-risk maps. In fact,
there were few viable alternatives (e.g., direct visual observation,
automated camera systems, backtracking) and these would have
suffered from site accessibility limitations, view occlusion, and
other sampling biases. Unfortunately, concurrent wolf-cattle GPS
data are extraordinarily challenging to acquire given the coopera-
tion, commitment, and consensus required among affected gov-
ernment agencies, cattle producers, and other stakeholder groups
to implement politically charged data collections of this sort. In this
study, these challenges were only surmounted at one study area
and only for one study yr. Therefore, on one hand, the case study
conducted at Study Area 1 in 2009 was a rigorous validation of
encounter risk mapping within that limited scope. On the other
hand, robustness of the encounter risk mapping concept could not
be effectively evaluated and thus awaits further validation efforts.

Use of wolf-cattle encounter risk maps for predicting spatial risk
of wolf-caused depredation was validated at three of the four study
areas, but sample sizes for confirmed depredations within each of
these study areas were small. However, when considered in com-
posite, the data set of 16 total depredations represents a moderate,
more statistically effective sample size for validation. The three
main findings from this data set were 1) 75% of these depredations
occurred in the top two risk classes, 2) a strong positive relationship
existed between among depredation counts and risk class ranking
(rs=0.77), and 3) depredations occurred closer to areas of very high
encounter risk than would be expected at random; all lend
considerable support to conclusions that wolf-cattle encounter risk
maps are indeed effective for predicting the spatial risk of wolf
depredation. Further efficacy evaluations are certainly needed,
particularly in other regions experiencing wolf-cattle conflict, to
assess applicability and robustness of the encounter risk mapping
concept. These evaluations could be facilitated and greatly
enhanced by routine collection of site coordinates (GPS) during
formal depredation investigations.

Management Implications

Predicting and mapping wolf-cattle encounter risk creates the
potential for cattle producers and natural-resource managers to
more effectively apply husbandry practices, resources, and conflict
mitigation techniques to specific areas within extensive grazing
lands, where these things are most critically needed. For example,
at the four study areas, identifying areas of very highest encounter
risk (i.e., class 5 in a 5-class system) could narrow the spatial focus
of conflict management by 87-91%. At Study Area 1, instead of
spreading effort, attention, and resources across the entire 112 km?
extent, the focus for wolf-cattle conflict management could be
narrowed to just 14.8 km? of that extent. This result would obvi-
ously be a huge improvement in efficiency and would quite likely
enhance the efficacy of these management actions. Cattle distri-
bution management planning would certainly be more well
informed. Mitigation practices like range riding would be better
targeted. Encounter and depredation rates might thus be reduced.
Where depredations did occur, there would be increased likelihood
these depredations would be detected and formally addressed.

However, operationalizing research findings is often quite a
challenge. If the procedures described earlier require GPS tracking
data to develop cattle RSF maps, this requirement would be beyond
the practical capacity of many management situations. However, as
an alternative, it is probably quite possible to effectively apply one
of the four fitted cattle RSF models and their coefficients from this
study to a new management area. These four study areas were
originally selected to span a broad scope of the physical, ecological,
and managerial variability that exists across the NRM region. As
such, at least one of these fitted models would likely provide
initially adequate predictions of cattle resource-selection patterns
when applied to a management area with characteristics roughly
similar to one of the study areas. Field observations and other data
(e.g., upland water and mineral source locations) could be collected
and applied later, if needed, to improve the accuracy of the resul-
tant cattle RSF map. What follows is a brief workflow that cattle
producers, natural resource managers, or others might use to
develop an effective wolf-cattle encounter risk map for moun-
tainous grazing lands with characteristics like those of one or more
of the study areas described here. First, where possible, collect and
use GPS tracking data for fitting the cattle RSF model coefficients to
the specific site; otherwise, select the most relevant fitted cattle RSF
model and coefficients from this study. Next, compile GIS layers for
five predictors of the cattle RSF model and three predictors of the
wolf RSF model and then apply the models in a GIS to create the
digital cattle and wolf RSF maps. Assess and confirm rationality of
the maps based on site experience and available data. Combine
these digital maps using the equation included herein (see Eq. 2).
Finally, apply and evaluate the resultant wolf-cattle encounter risk
map over time and adjust as needed as new experience and data
become available.

Currently, decisions about cattle and wolf management on
mountainous grazing lands are hampered by lack of information
and understanding about spatial risks. It is difficult to make correct,
effective, or even reasonable decisions without a clear under-
standing of the risks involved. The research results and potential
applications described in this paper provide the means to quantify
and predict spatial risks of wolf-cattle encounters and associated
depredation for these extensive, rugged, and remote landscapes.
This new predictive understanding of spatial risk will greatly aid
livestock producers, natural resource managers, and policy makers
in more effectively applying husbandry practices, allocating miti-
gation resources, and developing conflict mitigation plans and
policies applicable throughout the mountainous western United
States and potentially other regions of the world where wolves and
cattle come into conflict.
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